Can we reprogram our reptile brain? Life with post traumatic stress disorder can be challenging, but there is hope. If an experience haunts you, learn what neuroscience says helps and what does not. Some uninformed therapists do more harm than good, but you might be able to reprogram your own trauma, even without expensive drugs that erase memories. 

… Even though PTSD is triggered by a stressful incident, it is really a disease of memory. The problem isn’t the trauma—it’s that the trauma can’t be forgotten. Most memories, and their associated emotions, fade with time. But PTSD memories remain horribly intense, bleeding into the present and ruining the future. So, in theory, the act of sharing those memories is an act of forgetting them.

A typical CISD session lasts about three hours and involves a trained facilitator who encourages people involved to describe the event from their perspective in as much detail as possible. Facilitators are trained to probe deeply and directly, asking questions such as, what was the worst part of the incident for you personally? The underlying assumption is that a way to ease a traumatic memory is to express it.

The problem is, CISD rarely helps—and recent studies show it often makes things worse. In one, burn victims were randomly assigned to receive either CISD or no treatment at all. A year later, those who went through a debriefing were more anxious and depressed and nearly three times as likely to suffer from PTSD. Another trial showed CISD was ineffective at preventing post-traumatic stress in victims of violent crime, and a US Army study of 952 Kosovo peacekeepers found that debriefing did not hasten recovery and led to more alcohol abuse. Psychologists have begun to recommend that the practice be discontinued for disaster survivors. (Mitchell now says that he doesn’t think CISD necessarily helps post-traumatic stress at all, but his early papers on the subject seem clear on the link.)

Mitchell was right about one thing, though. Traumatic, persistent memories are indeed a case of recall gone awry. But as a treatment, CISD misapprehends how memory works. It suggests that the way to get rid of a bad memory, or at a minimum denude it of its negative emotional connotations, is to talk it out. That’s where Mitchell went wrong. It wasn’t his fault, really; this mistaken notion has been around for thousands of years. Since the time of the ancient Greeks, people have imagined memories to be a stable form of information that persists reliably. The metaphors for this persistence have changed over time—Plato compared our recollections to impressions in a wax tablet, and the idea of a biological hard drive is popular today—but the basic model has not. Once a memory is formed, we assume that it will stay the same. This, in fact, is why we trust our recollections. They feel like indelible portraits of the past.

None of this is true. In the past decade, scientists have come to realize that our memories are not inert packets of data and they don’t remain constant. Even though every memory feels like an honest representation, that sense of authenticity is the biggest lie of all.

When CISD fails, it fails because, as scientists have recently learned, the very act of remembering changes the memory itself. New research is showing that every time we recall an event, the structure of that memory in the brain is altered in light of the present moment, warped by our current feelings and knowledge. That’s why pushing to remember a traumatic event so soon after it occurs doesn’t unburden us; it reinforces the fear and stress that are part of the recollection.

This new model of memory isn’t just a theory—neuroscientists actually have a molecular explanation of how and why memories change. In fact, their definition of memory has broadened to encompass not only the cliché cinematic scenes from childhood but also the persisting mental loops of illnesses like PTSD and addiction—and even pain disorders like neuropathy. Unlike most brain research, the field of memory has actually developed simpler explanations. Whenever the brain wants to retain something, it relies on just a handful of chemicals. Even more startling, an equally small family of compounds could turn out to be a universal eraser of history, a pill that we could take whenever we wanted to forget anything. And researchers have found one of these compounds. In the very near future, the act of remembering will become a choice.

Every memory begins as a changed set of connections among cells in the brain. If you happen to remember this moment—the content of this sentence—it’s because a network of neurons has been altered, woven more tightly together within a vast electrical fabric. This linkage is literal: For a memory to exist, these scattered cells must become more sensitive to the activity of the others, so that if one cell fires, the rest of the circuit lights up as well. Scientists refer to this process as long-term potentiation, and it involves an intricate cascade of gene activations and protein synthesis that makes it easier for these neurons to pass along their electrical excitement. Sometimes this requires the addition of new receptors at the dendritic end of a neuron, or an increase in the release of the chemical neurotransmitters that nerve cells use to communicate. Neurons will actually sprout new ion channels along their length, allowing them to generate more voltage. 
Collectively this creation of long-term potentiation is called the consolidation phase, when the circuit of cells representing a memory is first linked together. Regardless of the molecular details, it’s clear that even minor memories require major work. The past has to be wired into your hardware.

How does recall work then? The neuroscience details are still being understood, but human memory is dynamic and reconstructive. We build and strengthen memories each time we recall or recount them. 

… Memories are not formed and then pristinely maintained, as neuroscientists thought; they are formed and then rebuilt every time they’re accessed. “The brain isn’t interested in having a perfect set of memories about the past,” LeDoux says. “Instead, memory comes with a natural updating mechanism, which is how we make sure that the information taking up valuable space inside our head is still useful. That might make our memories less accurate, but it probably also makes them more relevant to the future.” …

by 2005 other researchers had started to take his side. Multiple papers demonstrated that the act of recall required some kind of protein synthesis—that it was, at the molecular level, nearly identical to the initial creation of a long-term recollection.

To be more specific: I can recall vividly the party for my eighth birthday. I can almost taste the Baskin-Robbins ice cream cake and summon the thrill of tearing wrapping paper off boxes of Legos. This memory is embedded deep in my brain as a circuit of connected cells that I will likely have forever. Yet the science of reconsolidation suggests that the memory is less stable and trustworthy than it appears. Whenever I remember the party, I re-create the memory and alter its map of neural connections. Some details are reinforced—my current hunger makes me focus on the ice cream—while others get erased, like the face of a friend whose name I can no longer conjure. The memory is less like a movie, a permanent emulsion of chemicals on celluloid, and more like a play—subtly different each time it’s performed. In my brain, a network of cells is constantly being reconsolidated, rewritten, remade. That two-letter prefix changes everything.

To erase a memory, block a certain protein synthesis.

To remember something, your brain synthesizes new proteins to stabilize circuits of neural connections. To date, researchers have identified one such protein, called PKMzeta. Before trying to erase the targeted memory, researchers would ensure that it was ensconced by having the patient write down an account of the event or retell it aloud several times.

… To delete the memory, researchers would administer a drug that blocks PKMzeta and then ask the patient to recall the event again. Because the protein required to reconsolidate the memory will be absent, the memory will cease to exist. 

Neuroscientists think they’ll be able to target the specific memory by using drugs that bind selectively to receptors found only in the correct area of the brain. …

If the drug is selective enough and the memory precise enough, everything else in the brain should be unaffected and remain as correct—or incorrect—as ever.

Although I can’t find the reference now, I recall one neuroscientist saying that thinking is indistinguishable from memory recall. This gives even more power to understanding the strange truth of how memory works.

So many of our assumptions about the human mind—what it is, why it breaks, and how it can be healed—are rooted in a mistaken belief about how experience is stored in the brain. (According to a recent survey, 63 percent of Americans believe that human memory “works like a video camera, accurately recording the events we see and hear so that we can review and inspect them later.”) We want the past to persist, because the past gives us permanence. It tells us who we are and where we belong. But what if your most cherished recollections are also the most ephemeral thing in your head?

Each time you remember something, the memory is subtly changed to fit in with your present experiences. The adage that “time heals all wounds” can apply to traumatic experience because details of memory drift and decay without our knowledge. 

Reconsolidation provides a mechanistic explanation for these errors. It’s why eyewitness testimony shouldn’t be trusted (even though it’s central to our justice system), why every memoir should be classified as fiction, and why it’s so disturbingly easy to implant false recollections. 

The psychologist Elizabeth Loftus has repeatedly demonstrated that nearly a third of subjects can be tricked into claiming a made-up memory as their own. It takes only a single exposure to a new fiction for it to be reconsolidated as fact.)

And this returns us to critical incident stress debriefing. When we experience a traumatic event, it gets remembered in two separate ways. The first memory is the event itself, that cinematic scene we can replay at will. The second memory, however, consists entirely of the emotion, the negative feelings triggered by what happened. Every memory is actually kept in many different parts of the brain. Memories of negative emotions, for instance, are stored in the amygdala, an almond-shaped area in the center of the brain. (Patients who have suffered damage to the amygdala are incapable of remembering fear.) By contrast, all the relevant details that comprise the scene are kept in various sensory areas—visual elements in the visual cortex, auditory elements in the auditory cortex, and so on. That filing system means that different aspects can be influenced independently by reconsolidation.

The larger lesson is that because our memories are formed by the act of remembering them, controlling the conditions under which they are recalled can actually change their content. The problem with CISD is that the worst time to recall a traumatic event is when people are flush with terror and grief. They’ll still have all the bodily symptoms of fear—racing pulse, clammy hands, tremors—so the intense emotional memory is reinforced. It’s the opposite of catharsis. But when people wait a few weeks before discussing an event—as Mitchell, the inventor of CISD, did himself—they give their negative feelings a chance to fade. The volume of trauma is dialed down; the body returns to baseline. As a result, the emotion is no longer reconsolidated in such a stressed state. Subjects will still remember the terrible event, but the feelings of pain associated with it will be rewritten in light of what they feel now.

LeDoux insists that these same principles have been used by good therapists for decades. “When therapy heals, when it helps reduce the impact of negative memories, it’s really because of reconsolidation,” he says. “Therapy allows people to rewrite their own memories while in a safe space, guided by trained professionals. The difference is that we finally understand the neural mechanism.”
But competent talk therapy is not the only way to get at those mechanisms. One intriguing approach to treating PTSD that emerged recently involves administering certain drugs and then asking patients to recall their bad memories. In one 2010 clinical trial, subjects suffering from PTSD were given MDMA (street name: ecstasy) while undergoing talk therapy. Because the drug triggers a rush of positive emotion, the patients recalled their trauma without feeling overwhelmed. As a result, the remembered event was associated with the positive feelings triggered by the pill. According to the researchers, 83 percent of their patients showed a dramatic decrease in symptoms within two months. That makes ecstasy one of the most effective PTSD treatments ever devised.
Other scientists have achieved impressive results with less extreme drugs. In 2008, Alain Brunet, a clinical psychologist at McGill University, identified 19 patients who had been suffering for several years from serious stress and anxiety disorders such as PTSD. (Their traumas included sexual assaults, car crashes, and violent muggings.) People in the treatment group were given the drug propranolol, a beta-blocker that has long been used for conditions like high blood pressure and performance anxiety; it inhibits norepinephrine, a neurotransmitter involved in the production of strong emotions. Brunet asked subjects to write a detailed description of their traumatic experiences and then gave them a dose of propranolol. While the subjects were remembering the awful event, the drug suppressed the visceral aspects of their fear response, ensuring that the negative feeling was somewhat contained.

One week later, all the patients returned to the lab and were exposed once again to a description of the traumatic event. Here’s where things got interesting: Subjects who got the placebo demonstrated levels of arousal consistent with PTSD (for example, their heart rate spiked suddenly), but those given propranolol showed significantly lower stress responses. Although they could still remember the event in vivid detail, the emotional memory located in the amygdala had been modified. The fear wasn’t gone, but it no longer seemed crippling. “The results we get sometimes leave me in awe,” Brunet says. “These are people who are unable to lead normal lives, and yet after just a few sessions they become healthy again.”


Something to Remember: You Can Reprogram Parts of Yourself

Based on all of the above, you may simply and successfully self apply a powerful PTSD treatment: Get to a peaceful relaxed happy place, physically and mentally, then recall your worst traumas, staying calm and peaceful, and in the process re-writing your own wiring, un-linking the memories from fear and emotional pain. 

In fact, at the deepest lizard brain level, what motivates us to act as we do, everything we think we love, fear or desire may be re-programmable. 

Create yourself as you wish to be.