Science: The Earth’s Core Should Not Exist

By known physics, the metal core at the center of our planet should not exist. Absent a massive 6.2 mile diameter chunk of cooler metal plunging into it a billion years ago to trigger rapid crystallization, our 760 mile diameter core is technically impossible.

One day, about a billion years ago, Earth’s inner core had a growth spurt. The molten ball of liquid metal at the center of our planet rapidly crystallized due to lowering temperatures, growing steadily outward until it reached the roughly 760-mile (1,220 kilometers) diameter to which it’s thought to extend today.

That’s the conventional story of the inner core’s creation, anyway. But according to a new paper published online this week in the journal Earth and Planetary Science Letters, that story is impossible.

In the paper, the researchers argued that the standard model of how the Earth’s core formed is missing a crucial detail about how metals crystallize: a mandatory, massive drop in temperature that would be extremely difficult to achieve at core pressures. [6 Visions of Earth’s Core]

Weirder still, the researchers said, once you account for this missing detail, the science seems to suggest that Earth’s inner core shouldn’t exist at all.

“Everyone, ourselves included, seemed to be missing this big problem,” study author Steven Hauck, a professor of Earth, Environmental and Planetary Sciences at Case Western Reserve University in Ohio, said in a statement. Namely, they were missing “that metals don’t start crystallizing instantly unless something is there that lowers the energy barrier a lot.”

In chemistry, this extra energy is known as the nucleation barrier: the point at which a compound visibly changes its thermodynamic phase. Liquid water, for example, freezes into a solid at the familiar 32 degrees Fahrenheit (0 degrees Celsius). If you’ve ever made ice cubes at home though, you know that even water stored at its freezing point can take several hours to fully crystallize. To speed up the process, you need to either expose the water to significantly colder temperatures (this is called “supercooling”) or expose it to an already-solid piece of ice to lower the nucleation barrier, reducing the amount of cooling required.

Supercooling is easily achieved for a single ice cube, but for Earth’s gigantic inner core, things get a little trickier, the researchers said.

“At the pressures of the core, it would have to cool 1,000 degrees Kelvin[726 degrees C or 1,340 degrees F] or more below the melting temperature in order to crystallize spontaneously from pure liquid,” Hauck told Live Science. “And that’s a lot of cooling, especially since at the moment, the scientific community thinks the Earth cools maybe about 100 degrees K per billion years.”

According to this model, “the inner core shouldn’t exist at all, because it could not have been supercooled to that extent,” study author Jim Van Orman, also a professor of Earth, Environmental and Planetary Sciences at Case Western, told Live Science. The molten inner core’s nucleation barrier, he said, must have lowered some other way – but how?

Via Fox

Why can’t we journey to the center of the earth to learn more?

… we’ll probably never journey to the center of the Earth. The hardiest drills penetrate only 7 miles (12 km) deep that’s just 0.2 percent of Earth’s radius before encountering such high heat that they melt. In all likelihood, the extreme temperature and pressure of our planet’s interior place it permanently out of reach.

Via LiveSci

It may be that we were hit by huge meteors at the same time Mars was hit, but with a larger diameter, the Earth’s core was not killed while the core of Mars was.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s